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This document reports the notes from the lecture Quantum materials : fundamentals
and applications of Professor Gregor Jotzu.

Example of NV Centers to Motivate This Field of Re-
search

Applications

NV centers have a wide range of applications in various fields, including quantum tech-
nologies and sensing;:

e Fluorescent markers

e Single-photon sources
e Quantum bits (Qubits)
e Quantum memories

e Quantum sensors for:

— Temperature
— Strain & pressure

— Electric and magnetic fields

General Properties of Diamond

Diamond, as a host material for NV centers, possesses exceptional properties:
e Can be polished, laser-cut, and RIE etched (Reactive Ion Etching)
e Can be grown via CVD (Chemical Vapor Deposition)

e Can withstand pressures up to ~ 500 GPa (5 MBar)

Thermal stability up to 700°C
High thermal conductivity: ~ 2000 W/K/m

e Non-toxic and acid-resistant

How to Generate NV Centers?
NV centers can be created through several methods:
e Naturally occurring in some diamonds
e Introduced during CVD (Chemical Vapor Deposition) growth

e Ton implantation with nitrogen at energies from 2 keV up to 20 MeV, followed
by annealing at 700°C

e Vacancy creation using femtosecond (fs) laser pulses



Chapter 1

Mathematical Basis

1.1 Formalism

To properly describe quantum theory, we must establish the correct mathematical for-
malism.
First, we define the fundamental quantum states known as "bra” and "ket” vectors.
A **ket** represents a state vector in a Hilbert space and is denoted as |¥). The **bra**
is its corresponding dual vector, written as (¥|, and is obtained via the Hermitian
conjugate:
|y — (P|c*.

where c is a complex number.

1.1.1 Projection and Probability Interpretation

To determine the probability of measuring the system in a particular state |a), we use
the projection of |¥) onto a chosen basis {|a), |8), ...}, leading to the probability:

Py = [(a| D)%
For a valid probability interpretation, the wavefunction must be normalized:
(P|T) = 1.

Additionally, the inner product satisfies the conjugate symmetry property:

(al¥) = (¥|a)".

1.1.2 Two-Dimensional Example
Consider a two-dimensional Hilbert space with an orthonormal basis {|0), 1)}, satisfy-
ing:

|(0]1)]* =0, or more generally, |(i|5)|> = d; ;.

A practical example is the polarization of light, where the horizontal and vertical
polarization states form the basis:

{IH),IV)}.



Here, |H) represents horizontal polarization and |V') vertical polarization. The su-
perposition states correspond to diagonal polarizations:

1 1
= ﬁ(|H>+IV>)7 =) =

Circular polarization states are given by:

+) (1H) = V).

S

2

1 1
V2 V2
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Another common example is the **spin-5** system, where the standard basis is:

{1119}

|R) (1) +i[V)), |L) (IH) = i[V)).

and the superposition states are:

1 1

ﬂ(IT>+|¢>)7 ) === =11
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1.1.3 Wavefunction Decomposition

A general wavefunction can be expressed in a chosen basis as:
[¥) = c0]0) + c1]1).
Using a phase convention, this can be rewritten as:
@) = ¢ (ao|0) + are ™ =)L) )

where @ is the **global phase**, ag and a; are real coefficients, and the normaliza-
tion condition imposes:

(U|W) = a2 +a? = 1.

1.2 Bloch Sphere Representation

A two-level quantum system can be conveniently represented on the **Bloch sphere**,
where any pure state can be written as:

|¥) = Cosg|0> + '® sing|1>.

Here, 6 and ¢ define the position of the state on the sphere, with § € [0;II] and
® € [0; 211].



Figure 1.1: Bloch sphere. |0) and |1) are the two states of the system. The plane
{z,y} corresponds to a real phase.

1.3 Unitary Operators, Schrodinger Equation, and
Hamiltonian

The most general form of any **2D Hamiltonian** is given by:

H = hol + hy6, + hyGy + h.6.,

where the **Pauli matrices** are:

(01 (0 —i (10
9¢=1\1 0) %%~ \i o) 7 \o 1)

Since H is Hermitian, its eigenvalues are:

60,1:hoi\/h%+h5+hgihoi|h|,

where |h| = | /hZ + hZ + h2.

The corresponding eigenvectors are:

cos =2 cos 2
— 2 - = 2,
[%0) <sin “fe"d’) Y (sin 362¢> )

1.3.1 Unitary Time Evolution Operator

The unitary time evolution operator governs the time evolution of a quantum state
under a Hamiltonian H. It is given by:

A - hlt hlt\ h-&
U = e /M = cos (|h|)]1+isin (|h|> Tl |U

-

h=(hg, hy, hy), &= (0g,04,02).

where:



1.3.2 Properties of the Evolution Operator
The unitary evolution operator satisfies the unitarity condition:
Ut =1

which ensures that quantum evolution is **norm-preserving** and **reversible**.

1.3.3 Rotation on the Bloch Sphere

The decomposition of U reveals that the quantum evolution corresponds to a **rota-
tion®™* of the state vector on the Bloch sphere:

U= e 777 = cos <|hh|t) I —isin (|hh|t) (n-&).

where n = ﬁ is the unit vector along l_i, meaning the evolution is a **rotation by

angle 6 = % about axis n**.

1.3.4 Action on a Quantum State

For an arbitrary quantum state |1(0)), the evolved state at time ¢ is:

[9(t)) = Ul(0)).
If the initial state is an eigenstate of H , the time evolution simply introduces a phase
factor:

Uls) = e B2 |yy).
For a **superposition state**, the time evolution results in a phase accumulation
and a mixing of states depending on H.

1.3.5 Example: Evolution of a Spin-1/2 System in a Magnetic
Field

Consider a spin-1/2 particle in a magnetic field along the z-axis. The Hamiltonian is:

a="v,
2

The unitary time evolution operator is then:

Ot) = ™% = (602 0> '

e

This describes a phase evolution of the spin-up and spin-down states.

1.3.6 Infinitesimal Evolution and the Schrodinger Equation
Expanding U for small ¢:

Ut) ~1— %m+0(t2).

This leads directly to the **time-dependent Schrodinger equation**:

L d A
ih= [ (1) = H|¢(1)).



1.3.7 Connection to Quantum Gates

In quantum computlng, unitary evolution corresponds to a quantum gate:
-If H « o, then U acts as an **X-rotation gate**. - If H o oy, then U acts as a

**Y_rotation gate**. - If H « o, then U acts as a **Z-rotation gate™*
These are fundamental operations in **quantum computing** and quantum infor-
mation processing.



Chapter 2

NV centers and population
transfer

2.1 Photoluminescence Properties of NV Centers

Conduction
band
ms=+1
le) ™
ms=
—— |s>
cie oy 1.945 eV P
No magnetic field With magnetic field
_________ ms=+1
mg==1 A
me=+1 =2 —] - ms=-1
l9)
mg=0 = — mg=0 me=0
Valence
band

Figure 2.1: Energy diagram of NV centers. The ground state is splitted by the Zero
field splitting and optical pumping is possible. (From Annu. Rev. Phys. Chem. 2014.
65:83-105, Schirhagl et al.)

Nitrogen-Vacancy (NV) centers exhibit remarkable photoluminescence properties,
which, as you will see, make them highly effective for detection purposes.

These centers are optically pumped using a green laser with a wavelength be-
tween 515nm and 532nm. Following excitation, they emit fluorescence over a broad
range of 600 nm to 700 nm, with a characteristic peak at 637 nm.

2.1.1 Triplet Ground and Excited States

We focus on the case of the triplet ground state 3G (denoted |g)), which is optically
excited to the triplet excited state *E (denoted |e)). The relaxation back to the



ground state occurs via two possible pathways:
e Radiative decay: Direct fluorescence emission.

e Non-radiative decay: A transition through a metastable state, which is more
probable if the NV center is in the m, = +1 state.

This spin-dependent decay mechanism is crucial: it creates a fluorescence contrast
between different spin states, enabling optical readout of the spin state. This property
makes NV centers highly valuable for quantum sensing applications.

2.1.2 Fluorescence Collection

A single NV center can emit up to 1 x 10% photons per second, making it detectable
with the right optical setup, such as parabolic collectors or high numerical aperture
objectives.

2.2 Zero-Field Splitting and Microwave Control

In the absence of an external magnetic field, the NV center’s triplet ground state consists
of:

o A singlet state mys = 0, and
e A degenerate doublet mgy = £1.
These states are separated by a well-known zero-field splitting of:
D = 2.87GHz. (2.1)

This means that the ms; = 41 states can be selectively populated by applying mi-
crowave (MW) radiation at the resonance frequency.
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Figure 2.2: Spectrum and fluorescence properties of NV centers (From Annu. Rev.
Phys. Chem. 2014. 65:83-105, Schirhagl et al.)
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2.3 Spin State Initialization

The excited state |e) has a finite lifetime:
e Bulk diamond: ~ 13 ns,
e Nanodiamonds: Up to 25 ns.

The ground state |g) has a longer lifetime (on the order of milliseconds). This
allows efficient spin initialization:

e When MW excitation stops, applying green light for a few milliseconds optically
pumps the system back into the m, = 0 state.

This mechanism provides a reliable way to prepare and control the spin state
of the NV center.

2.4 Magnetic Field Sensing

Applying an external magnetic field B lifts the degeneracy of the mg, = +1 states,
causing a Zeeman splitting given by:

AE = 24|B| = 2 x (28 GHz/T) x | B|. (2.2)

This shift allows NV centers to function as highly sensitive magnetometers. By
tuning the applied microwave frequency and observing fluorescence contrast, we can
precisely measure external magnetic fields.

(see figure [2.2)).

2.5 Quantum sensing and population transfer

NV centers are mainly used as quantum sensors for detecting low magnetic fields. The
technique is generally called ODMR for ”Optically Detected Magnetic Resonance” or
also ”Optical ESR”. As we explained earlier, the presence of a magnetic field will add
a Zeeman term to the Hamiltonian, and help us to resolve two peaks on the resonancy
curve.

Sensitivity of ODMR
HWHM

277 vV Nphotons

Now, when applying a DC magnetic field, we can choose to look at the system as
a two-level system between the states ms; = 0 and my = —1. In this representation,
H = h,0,, and if we start from |¥y >= | 1>, how can we rotate the spin state to the
state [P (t) >=||>7

Aw=2yB = ~ 10kHz/VHz =~ nT/VHz (2.3)

Brute force

The first possibility is to apply a strong magnetic field; however, it means an order of
magnitude of the tesla range, which is hard to obtain experimentally.
The Hamiltonian would looks like :

H = hyo, + h,o, (2.4)
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with h, >> h,.
Example taking h,=20h, :

Probabilities | < 1 |¢> |2and| < L |y > |?

1.0

0.8

0.6

— up
Down

0.4

0.0

0 50 100 150 200 250 300 350 400
time (u.a.)

(a) Population Transfer (b) Bloch sphere representation

Figure 2.3: Using a hard pulse to switch state

What is interesting to notice is that in this configuration the eigenstate is not exactly
on the x-axis but a bit off. Then the population transfer is not complete. To obtain a
proper % « bulse, one has to apply a Hamiltonian without z component.

Resonant transfer

A **resonant transfer** is possible for smaller amplitudes of the magnetic field. The

only condition for successfully transferring the spin state is a **matching frequency**
(Rabi frequency). The Hamiltonian in this case is time-dependent, but we do not require
slowly varying eigenstates:

H(t) = he(t)oy + ho0. = hysin(wt)oy, + h,o.. (2.5)
When the driving field is weak compared to the static field, i.e.,

he < hs, (2.6)

the energy splitting between eigenstates is given by and the frequency wq of the excitation
does match this energy difference in order to make the resonant transfer possible:

€ —e_ =2y/h2 + h2 (2.7

If you change the frequency slighlty off wg, you can not get a complete population
transfer. This situation is often visualized using the **peeled orange representation**,
where the Bloch sphere appears divided into slices, illustrating the oscillation of the
quantum state under a weak driving field. This representation highlights the trajectory
of the quantum state as it transitions under the influence of the oscillating field.
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Probabilities | < * |y > |2and| < { |y> |2

1.04

0.8

0.6

— Up
Down

0.4

0.2

0.0

[ 50 100 150 200 250 300 350 400
time (u.a.)

(b) Population evolution for a resonant
(a) Resonant transfer transfer

Figure 2.4: Using a resonant transfer to switch state

Adiabatic transfer

Finally, an ”adiabatic transfer” corresponds to changing eigenstates which vary slowly
enough to go from one state to another. In that case the Hamiltonian depends on time
like:

H=hg(t)oy + hs(t)o, (2.8)

| (t) > follows closely the eigenstate and takes the same path around the Bloch
sphere, and this is not really feasible experimentally :

Probabilities | < T |g> |2and| < | |y>|?

1.04

0.8

0.6 4

— up
Down

0.4

0.2

0.0

[ 200 400 600 800 1000
time (u.a.)

(b) Population evolution for an adiabatic

(a) Adiabatic transfer transfer

Figure 2.5: Using an adiabatic transfer to switch state

Until now we took the example of NV centers to present two-level interactions (i.e.
the Hamiltonians are 2x2 matrices). However, we should not forget that the NV centers
have a degenerate excited state for | =1 >. In order to consider a two-level excitation,
a DC magnetic field can be used to split these levels.
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2.6 NV centers : a 3-level system

NV centers have a spin 1 and to describe the interactions of the spin we now need 3x3
Hamiltonian and spin operator matrices. The Hamiltonian of NV centers in diamond
depends on the system’s specific configuration, but the general simplified Hamiltonian
is :

Hyy = DS% +gupB - S (29)

Spin-1 operators can be defined :

010 0 —i 0 10 0
Sp=[1 0 1|:;8,=1]i 0 —il;S.=[0 0 o0 (2.10)
01 0 0 i 0 00 -1

Around 75mT we see that levels |0) and | — 1) do cross, we can basically expect an
eigenstate of the shape | —) if we consider the two-level system {|0),| — 1)}

Eigenenergies of the NV center with a DC magnetic field

— m_s=+1
m_s=-1
— m_s=0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Bz (T)

Figure 2.6: NV center energy levels with a DC magnetic field along the NV axis. The
energy scale is given in GHz

We are not able to represent a 3-level system on the Bloch sphere, though, it is
possible to project two states on the good spin-operator matrices and partially represent
the interactions of two of the three levels of the system...
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Chapter 3

Tight Binding model and
Geometric phase

3.1 From two-state system to a chain of sites

3.1.1 Two-level system

Two-state system simpliest representation:

Eigenstates:

. (3.1)

E—%2, |11 (3.2

Figure 3.1: Two level system without tunneling

15



Now let’s add hopping terms and we do not consider the o, term (case A = 0), but
pay attention, H; must be Hermitian (meaning we have time-reversal symmetry):

H; = —t(akzi + aIaT) (3.3)

at and a| are, respectively, the creation and anihilation operators, t is an energy but
corresponds to the tunneling probability.

If |Wy) = | 1) the corresponding transfer period is 74 = % On the Energy graph
we expect two points at +t.

3.1.2 Chain of sites and momentum basis

Now, let’s increase the number of sites considering a chain of sites, that could be a
dicoupled diatomic chain :

Z N
—1 A N-2
H= Z (—1)7 5a;aj —t Z (a;r-Jrlaj + a;r-ajJrl) (3.4)
Jj=0 j=0

Even sites will have an onsite energy +% and odd sites —%. The index for the
hopping term goes from zero to N-2 because we are not considering circular boundary
conditions for now, and a tunneling at the end of the chain is not possible. If you want
the circularity, just change the final index to N-1.

The best way to understand the hamiltonian is actually to plot it. What you see
are the diagonal terms coming from on-site energies and off diagonal are the hopping
terms which links neighboor sites. When adding circular boundary conditions you see

appearing those two supplementary terms off diagonal connecting the first and last sites.

Real part of the Hamiltonian with no circular boundary conditions

0.75

- 0.50

r0.25

r0.00

r—0.25

—-0.50

-0.75

—-1.00

Figure 3.2
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Real part of the Hamiltonian with circular boundary conditions

1.00

0.75

- 0.50

r0.25

r0.00

r—0.25

—-0.50

-0.75

—-1.00

Figure 3.3

Now we understand what is the real space Hamiltonian, let’s look a the wavefunction
distribution for given eigenstates and the energy spectrum:

Energy Spectrum

2.0 A

1.5+

1.0 A

0.5 A

0.0

Energy

—0.5 1

—1.0 A

—1.5 A

—2.0 A

0 5 10 15 20 25 30 35 40
State index

Figure 3.4: No circular boundary conditions

If we do plot the eigenergies in the real space, we can see the cosinusoidal shape of
the energy distribution. Both cosine curves have an amplitude of 2t (where t=1), and

17



we see an opened gap of A = 0.4. More visibly, we can look at the distribution of the
wavefunction for some eigenstates of the system :

Wavefunction Density (Tight-Binding Model)

Probability Density (u.a.)

o
(5]
1

|

0 5 10 15 20 25 30 35 40
Site index

o
o
b

Figure 3.5: Wavefunction localization for two of the eigenstates

What has to be noticed is first, the presence of those edge states that will disappear
if we had circular boundary conditions because they represent states localized at the
edges. Also, you can not find flat standing wavefunctions of 0 energy without circular
boundary conditions, it would cost to much in Energy for the wavefunction to drop to
0 on the edges. This mean that if we set A = 0, you will see eigenenergies states in the
gap only with circulary boundary conditions.

Adding circular boundary conditions should change those characteristics:
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Energy Spectrum

2.0 A

1.5+

1.0 A

0.5 A

0.0

Energy

—0.5 1

—1.0 -

—1.5~

—2.0 1

0 5 10 15 20 25 30 35 40
State index

Figure 3.6: Circular boundary conditions

Eigenergies are now paired and the pairing comes from the fact that we can find two
different eigenstates of same eigenenergy but opposite momentum.

Wavefunction Density (Tight-Binding Model)

2.00 A w
1.75 1
1.50 -
1.25 ~
1.00 A

0.75 A

Probability Density (u.a.)

0.50 A

0.25 A

0.00 A l

0 5 10 15 20 25 30 35 40
Site index

Figure 3.7: Wavefunction localization for two of the eigenstate with circular boundary
conditions
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In those plots, it is clear that the basis of states is the basis {|j)} where j are the
different sites as every eigenstates are localized exactly on the sites. However, it is
preferable to work in the momentum basis to plot the band structures. For this we need
to change of basis and the usual wavefunction expansion is :

k) = ﬁ Z’f ) (3.5)

still conserving the orthogonality condition:
(K'|k) = Onr (3.6)

The Hamiltonian looks now completely different :

Hamiltonian in the momentum basis
1.00

0.0
0.75
2.5
r0.50
5.01
r0.25
7.54
r 0.00
10.01
r—0.25
12,51
—0.50
15.01
-0.75
17.51
-1.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Figure 3.8

In the momentum space representation, we are going to plot the eigenenergies over
a given period which could be either [T, Z] or [0, 2%]. The discretisation of k depends
on the total number of sites N; ]%[—’;, meaning that a bigger number of sites looks like a
continuum on the Energy spectrum.

In the k-space, the hopping Hamiltonian would then be :

Hy =t 2cos(ka)|k) (k] (3.7)
k

And the band structure representation:

Ey = —2tcos(ka) (3.8)

3.2 SSH model

The SSH model was first introduced in order to model polyacethylene. It does correspond
to the same kind of 1D chain, but now with different tunneling probabilities between
sites.

20



The Hamiltonian of the system is given by :
o= t(ath: —bla) —to(al b+ blas é T ébTb‘ (3.9)
—Z - 1(a’j i+ ja]) - 2(aj+1 j + ja]-‘rl) + 2%‘“] 9% .
J

Using the proper base |a, k) and |b, k), the Hamiltonian can be written as a matrix

like : A .
5 —t1 — tge U
H (—t1 2, gika 3 ) (3.10)
Components of H :
H, = —(t1 + t2) cos(ka)o, (3.11)
Hy = —(t1 — t2)sin(ka)oy (3.12)
A
H, = 50z (3.13)

The energy is given by:
E=+\/hZ +hZ+h? (3.14)
3.3 Tight-Binding Approximation for Graphene

3.3.1 Hamiltonian

The tight-binding Hamiltonian is given by:
=3 h(K)
k

where the summation is over nearest neighbors so that :

0 D tve*ﬁi}?
H = hyo, + hyo, = s i 3.15
YOy (Zz g e ) (3.15)

with, |v| = a = 1.42A4 and t; ~ 2.8¢V/, a being the lattice vector.
The energy dispersion relation is:

E=+t\/3+ f(k)

where:

f(k) = 2cos(V/3ky,a) + 4cos(§kya)cos(gkza)

21



Honeycomb Lattice Band Structure (Lower Band)

0.00

-0.36

-0.72
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-1.80 §
-2.16
-2.52

—2.88

Figure 3.9

Upper and lower bands are completely symmetric when the hopping term is the same
between each nearest neighbors.

Honeycomb Lattice Band Structure (Upper Band)
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0.72
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0.00

Figure 3.10
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Honeycomb Lattice Band Structure

Energy E(kx, ky)

Figure 3.11: 3D representation of the band structure

3.3.2 Key properties
At T(0,0) point, the energy difference is maximum : AFE = 6t, "not frustrated”

Dirac points are located at:
K — (212_7T> K — (21_2_W>

3a’ 3v/3a 3a’ 3v3a

and you can find other KK’ periodically, for example:
4 4
K=(0,—— ), K=(0—-——r

( 3\/§a> ( 3\/§a>

Expanding around the Dirac points, we obtain the low-energy Hamiltonian:
Heg = UF(Ua:kz =+ Uyky)

where vp = 3’57“ is the Fermi velocity, ~ 108m.s~1 ~ ﬁ
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Honeycomb Band Structure (A=0.0)

Energy (t)
o
!

k-path

Figure 3.12: K path for a honeycomb lattice. Two Dirac points are distinguishable.

Opening the gaps

We can act on the parameters of our honeycomb lattice to try to open gaps at the Dirac
points for instance. This can be achieved by modifying one of the three hopping terms,
let’s say t3.

Down here t3 is small compared to the other hopping terms, and the direct conse-
quence is the appearing of a preferential direction for conductive channels. The electrons
travel easily between sites connected by t1 and t2 hopping terms:
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Honeycomb Lattice Band Structure (Lower Band)
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Figure 3.13: Band structure with one smaller hopping term

Honeycomb Lattice Band Structure

Energy E(kx, ky)

Figure 3.14: 3D representation of the band structure with one smaller hopping term
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Honeycomb Band Structure (A=0.0)

2.0
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-15

-2.0
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Figure 3.15: K-path with one smaller hopping term

On the contrary, when one of the hopping terms is way bigger than the two others
we do obtain opened gaps where were the Dirac points.

Honeycomb Lattice Band Structure (Lower Band)
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Figure 3.16: Band structure with one bigger hopping term
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Honeycomb Lattice Band Structure
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Figure 3.17: 3D Band structure with one smaller hopping term

Honeycomb Band Structure (A=0.0)

Energy (t)
o

k-path
Figure 3.18: K path with one smaller hopping term

One can also try with non zero on-site energy difference A.
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3.3.3 Symmetry considerations

We now analyze the symmetry properties of the Hamiltonian under key transformations.
One has to remember that we will always have:

- MK) = hgyoy + hyo, with h, = 0 because of 7 and P symmetries in pristine
graphene.

- E(K) = E(—K) if we have either 7 or P or both of them.

Time-Reversal Symmetry (7)) Time-reversal acts as:

TH(X)T ' = H(-k)

In terms of Pauli matrices, time-reversal is represented by:

T =io,K

where K is complex conjugation. This transformation flips momentum k — —k and
also changes the sign of o, leading to:

Heg(—k) = vp(—0zks — oyky)

which confirms that time-reversal symmetry is preserved.
Inversion Symmetry (P)
Inversion symmetry acts as:

PH()P~' = H(—k)

In graphene, inversion exchanges the two sublattices (A and B), which is represented
by the Pauli matrix o,:

P =o,
Applying inversion to the effective Hamiltonian:

PHeg(k)P ™' = vp(osks + oyky)

Since Heg(—k) = vp(—0zks — oyky), inversion symmetry is respected.
Combined PT Symmetry
The combination of time-reversal and inversion acts as:

PT = 0,(ioyK) = ic,K
which satisfies:

(PT)* = -1

indicating a Kramers degeneracy, which protects the Dirac points from being gapped
unless additional symmetry-breaking terms are introduced.
The Dirac points are protected by time-reversal and inversion symmetry:

PT =1

This ensures that the gap remains closed unless a perturbation breaks symmetry.
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3.4 Geometric phase
For any trajectory in K-space:
WK (0)) > O [(K (1)) >

and
Where:

I ¢
@tot:;/ <\IJ|H\\IJ>dt’—/ < W[ ¥ > at'.
0 0

The first term here is the ”Dynamical phase” which is like asking ourselves the
question ” for how long are we doing the loop?”. The second term is the so-called
Geometric phase or AA phase noted .

Dynamical Phase and Adiabatic Effects

The total phase accumulated by a wavefunction evolving in time is:

9total = edyn + /8

where:

Oaye =~ [t (o)1)

The non-adiabatic correction to the phase is related to the transition between eigen-
states and can be described using the transition probability:

Pm%n'\‘

(n |0 H |tm) 2
E,—E,,

In the case of a time ¢ >> % meaning that the change to the Hamiltonian is really
small compared to the overall Hamiltonian, and so that the eigenstate is evolving slowly
over time (Adiabatic limit), we can express the dynamical phase and Berry phase such
that :

- Dynamical phase is :

1 t
f/ dt' E,(K(t"))
h Jo
- The Berry phase is :
T =i AU () V()
C

We clearly see that time doesn’t matter in the Berry phase expression so that only
the trajectory is important. Another thing to notice is that we could also express it
thanks to the Hamiltonian, which can be useful for numerical simulation computations.
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Berry Phase and Connection

The Berry connection is defined as:

Alk) = i(u(k)[Viclu(k))

where |u(k)) is the eigenstate of the Hamiltonian.
The Berry phase along a closed loop C' in momentum space is:

yzch(k).dk

If the loop encloses a Dirac point, the Berry phase is quantized:

y=m

which is a signature of the topological nature of the system.

Berry Curvature and Berry Phase

The Berry phase is defined as:
= Ak, (3.16)
c
where the Berry connection A is given by:

A = i{un | Vi|uy). (3.17)

The Berry curvature is then obtained as the curl of the Berry connection:

Q(k) = Vi x A. (3.18)

For a two-band system:

. (un| Ok, H|tm) (Um0, H|un) — (x <> y)
Qk) = = = . 3.19
m#n
Applying this to the Dirac Hamiltonian, the Berry curvature takes the form:
1 kI+E
Qk) =+ LR / (3.20)

2 (k2 + k2)3/2°

which results in a quantized Chern number.

Geometric Interpretation

The Berry phase can be interpreted as the flux of the Berry curvature over a closed
surface:

wz/SQ(k)dS. (3.21)

Using Stokes’ theorem:

ch-dkz/SQ.ds. (3.22)

This indicates that the Berry curvature behaves like an effective magnetic field in
parameter space.
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Physical Consequences

- The presence of Berry curvature modifies the equation of motion for wave packets:

i = ViE —k x Qk). (3.23)

This leads to anomalous transport effects, such as the anomalous Hall effect.
- In the case of graphene, the Berry phase is w, which protects the Dirac points and
prevents localization of carriers.

Simple example of a two-Level system

For a simple two-level system:

H=—0,

A
2
the eigenstates are:

0 )
_ [ cosg v sin 5
+) (ew sin g) =) (—e“i’ cos g)

The Berry connection in this case is:

A= (—|iVi|-) = %(1 — cosO)Vo

leading to a Berry curvature:

) = —sind
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Example: Berry curvature in graphene

Normalized vector fields for the eigenvectors of E2
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Figure 3.19: Honeycomb lattice winding. At Dirac points, the z component of the
eigenstates is stronger but K and Kp shows different winding.
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Berry curvature plot

4 | —— Brillouin zone
® Dirac Points -4

ky
o
|
T
o
Berry curvature

Figure 3.20: Berry curvature, we consider the diamond Brillouin zone in which we clearly
see the Dirac points in the center

3.5 AB Phase in Haldane Model and Phase Diagram

In order to get an overall :
[] azo
BZ

One needs to break time reversal symmetry 7. It means getting a different (and oppo-
site) h, for the two Dirac points of our Brillouin zone Kpp and —Kpp. It could be a
sin(kya)o, term. It is called ”topologically non trivial”.

Rk: a magnetic field can brake time-reversal symmetry

The Haldane model proposes to connect the NNN (Next nearest neighboors) A-A
and B-B sites of the honeycomb lattice thanks to tunneling terms tf’ and tf’
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A

Figure 3.22: Defined vectors with right winding

Hamiltonian Components

On the diagonal:

hi(k) = Z (Re(t;‘/ + ") cos (E : Uj) +Im(t —tP) sin(E : Uj))
J

h.(k) = Z <Re(t3-4/ — 5" cos (E : 17}-) + Im(t;" + 7' sin(E : '6}-)) + %
J

Simplified: same phase term to have a complex tunneling that is doing what we
want (e.g., sin term).
let’s note:
m = Im(t}" +t7)

We do get such a distribution for the corresponding term:
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Figure 3.23: Haldane model flux distribution

Band Structure Evolution

One Dirac point is not gapped so that in the limit cases, contributions sum and we
do get a non-zero total geometric phase :

(J [pz2=0) (J Jpz 2 =2m)

m=0,A>0 A=0m>0

Haldane’s Phase Diagram

Conditions:
tf’ = tf’ for all i, j
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¢ = arg(t7")

Figure 3.24: Haldane model phase diagram

The phase diagram above provides insights into the different regions of the system,
depending on the phase ¢ and the parameter A. These regions are classified based
on the topological properties of the system, as indicated by the integral of the Berry
curvature, £2. A natural progression from the discussion of this phase diagram is the
concept of the **Chern number**, which plays a fundamental role in characterizing the
topological nature of quantum systems.

The **Chern number** is a topological invariant that quantizes the Hall conductance
in systems exhibiting topological phases. It is associated with the Berry curvature, 2,

and is given by the integral:
1
C=— / / Qd*k,
2T BZ

In the context of the Haldane model, the Chern number provides a way to classify the
different phases of the system. For example, in regions where [ [Q = 27, the Chern
number is +1, indicating a topologically nontrivial phase. On the other hand, when
J [ © = —27, the system exhibits a topologically trivial phase, with a Chern number
of -1. The integral of the Berry curvature directly reflects the change in the system’s
topological properties across different regions of the phase diagram.

The Chern number thus acts as a robust classification tool for the different phases
of matter, helping distinguish between systems with different topological characteris-
tics. This concept is crucial not only in the study of the Haldane model but also in
understanding other topological phenomena such as the quantum Hall effect.

The Quantized Hall Effect and its Relation to the Hal-
dane Phase Diagram

The **Quantum Hall Effect (QHE)** occurs when a two-dimensional electron system
is subjected to a strong perpendicular magnetic field at low temperatures. In this
regime, the Hall resistance becomes quantized, and the system exhibits a discrete set
of conductance plateaus, which are directly related to the **Chern number** of the
system’s wavefunctions. This phenomenon is deeply tied to the topological properties
of the system, as described by the Berry curvature and the Chern number.
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The Hall conductance in a system exhibiting the quantum Hall effect is quantized in
integer multiples of a fundamental constant:

where v is the filling function of the Landau levels in the system, and e and h are
the charge of the electron and Planck’s constant, respectively. This quantization arises
due to the topological nature of the electron states in the system.

This can be derived from a simple model :

If we consider one cycle in the Brillouin zone, it does correspond to sideways move-
ments by C sites so that :

hK = F

F-t

K=K+ 5

for t =T: 5 P 5
s T
ey Y it

a h ¢ h

We do get T' = Eiea, and the current density for a 2D system is now written :

2
. ae 9 €
J2D, = N2DpVy = 7712D? = N2pa Eﬁ
The filling function v which determines the number of e~ per unit cell, can be defined

such that:
02

Jep, = VﬁE

The Hall conductivity does now appear and ”Quantum” in the quantum Hall effect
comes from this filling.

To connect this to the **Haldane Phase Diagram™*, recall that in the phase diagram,
the integral of the Berry curvature {2 provides a measure of the topological charge of
the system, and the value of this integral directly determines the Chern number.

As shown in the Haldane phase diagram, regions with [ [Q =27 or [ [Q = —27
correspond to topologically nontrivial phases, where the Chern number is £1, while
regions where [ [ € = 0 correspond to topologically trivial phases, with a Chern number
of 0. This directly links to the occurrence of the **Quantum Hall Effect**.

In these topologically nontrivial regions, the system exhibits **chiral edge states**,
which are one-dimensional conducting states that exist at the boundaries of the system.
These edge states are protected by the topology of the bulk system and are immune
to disorder, which is why the Hall conductance remains quantized and robust against
impurities.

In the diagram above, the regions where the Berry curvature integral equals 27 or
—27 correspond to **topologically nontrivial phases**. In these phases, the **Chern
number is +£1** indicating the presence of quantized Hall conductance and edge states.
These edge states move in one direction along the boundary, which is a hallmark of the
**Quantum Hall Effect**. Conversely, when the integral of the Berry curvature is zero,
the system is in a **topologically trivial phase**, where the Hall conductance is zero,
and no edge states exist.

The robustness of the quantum Hall effect comes from the fact that the Chern num-
ber is a **topological invariant**, meaning it is unaffected by small perturbations or
impurities in the system. As a result, the system’s conductance remains quantized even
in the presence of disorder, as long as the topological phase is preserved.
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Therefore, the phase diagram helps visualize the conditions under which the system
exhibits the quantum Hall effect and the associated topological properties. It illustrates
how the transition between different phases—driven by changes in parameters like ¢ and
A—can result in a shift from a topologically trivial phase to a topologically nontrivial
one, where the Hall conductance becomes quantized.

Example of interfaces

Vacuum : topologically trivial with C=0

P EECEEEEEEE >

Vacuum C =0 !

E Chern Number = -1

Vacuum C =0 E

We can now talk more about an experimental point of view. We refer to ” Transport”
when talking about electrons travelling through these conductive channels. From the
theory, those electrons should travel in an infinitesimal part at the edge of the sample.
However, it is in reality non trivial.
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Haldane situation

Honeycomb Band Structure (A=0.0)

A site

Energy (t)
o
L

A site’

k-path
Figure 3.25: Band structure with broken symmetry

In that situation, we get state accross the gap: ” the edge state is conductive” and has
a direction.

Magnetic flux filling

Considering an atomic size unit cell, filling it with a magnetic field as strong as a
magnetic flux seems completely unphysical in such a little area. Still, let’s think about
it because it is necessary to understand the quantized Hall effect.

New unit cell

We do get one magnetic flux per "unit cell”, and we can now create any other kind
of unit cell respecting this condition.
With a translation symmetry every three sites:

New unit cell

The unit cell is now three time larger than before and still contains ®.
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Now, what happens when we generalize this idea?

By varying the magnetic flux per plaquette, we can still define a unit cell as long as
the total flux per unit cell is a rational multiple of the flux quantum, i.e., ® = §<I>0 where
p and ¢ are integers. This means that for every rational value of flux per plaquette, the
system regains a form of periodicity—albeit with a larger unit cell.

This enlarged unit cell results in a band folding of the energy spectrum: the original
band splits into ¢ subbands. These bands can carry nontrivial topological information,
such as Chern numbers, which determines quantized Hall conductance. Some bands are
topologically nontrivial (Chern number # 0), while others are trivial (Chern number
=0).

L=}
(=]
2%}
[=]
-
(=]
=1
[=]
[=2]
= 4

L

Figure 3.26: Hofstadter Butterfly. Landau levels distribution with respect to the flux
filling.

When you plot the allowed energy levels of electrons in a 2D lattice as a function
of the magnetic flux per plaquette ®/®g, you obtain a fractal structure known as the
Hofstadter butterfly. This plot beautifully reveals how the energy spectrum splits and
forms gaps at rational flux values. The intricate structure is not random—each gap
can be labeled by a topological invariant, reflecting the quantized Hall response of the
corresponding filled bands.

Key insight: The Hofstadter butterfly shows that the interplay between a periodic
lattice potential and a uniform magnetic field leads to a highly nontrivial, self-similar
energy spectrum. It’s a striking example of how quantum mechanics, topology, and
lattice geometry come together to produce emergent physical phenomena.

And what if spin matters?

Let’s consider spin orbit coupling as an interaction such that :

by (K) # by (K)
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It can be achieved in transition meta-dichalcogenides (TMDs). It can be MoSs,
MoSey, WSy or WSes. They are materials that we can get as monolayers and they
have a direct bandgap with a hexagonal lattice.

In our honeycomb hamiltonian, we can add this term :

A4(Kpp) # A (=Kpp)

And this does lift the band structure depending on the spin orientation:

Energy

at Kpp 1

In the Kane-Mele model, we then get similar conductive edge states, but
now Time-reversal symmetry is maintained : ”Spin Hall effect”.

Spin-Hall effect

In 3D, it is also possible to get Dirac points called ”Weyl points”. One example is
the TaAs. Other materials like BisSeg are 3D TRS maintaining topologically insulated
with an insulating bulk and Dirac metallicity on surface.

One of the most active research in this field concerns 2D stacks using different mate-
rials with matching lattices. The most famous example is hBN-Graphene (hexagnonal
Boron Nitride on graphene, whom can tune the property of graphene). Moiré materials
are part of those 2D stacks engineering and the aim is to modify the periodicity of a
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lattice by using two layers on top of each others but with a twisting angle. The result is
a big unit cell, meaning a little Brillouin zone and in such a unit cell, flux can be much
bigger. If you are interested about this topic, you can read more litterature on twisted
bilayer graphene and the magic angle which can give very flat bands.
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3.6 Transport properties of Graphene

Transport Properties of Graphene

Vv l
R=F=r7
V w-d w-d w-d
R p- Y J
1
c=—-, j=0F
P
Ohm’s Law:
j=0F
Carrier density:
2
=T 5= (mobility)
m m

Assumptions:
e Electrons are treated as particles with an effective mass m*.
e (Classical model.

e Doesn’t apply in any material like graphene!

Measurement Techniques and Setup

1. Two—points measurement:
= = =p

2. Four-points measurement:

V = IRgample, (eliminates contact resistance)

The four-point probe technique is used to measure the intrinsic resistance of a
sample, eliminating contributions from contact and lead resistances.
Working Principle

e Current is injected using two outer contacts (I and I_).

e Voltage is measured across two inner contacts (V4 and V_).

e The voltmeter draws negligible current, so the voltage drop only reflects the resis-
tance between V. and V_.

Vi -V_
Rsample = %
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Diagram

I —] —

Hall Bar Geometry

The Hall bar geometry is used for measuring both longitudinal and transverse (Hall)
resistances. It is widely used in characterizing 2D materials such as graphene.

Features:

e Enables measurement of longitudinal resistance R;, and Hall resistance R,,,.
e Useful for extracting carrier density, mobility, and observing quantum Hall effects.

e Often combined with a backgate to control carrier concentration.

| v %
| 1

Substrate and Material Example

Substrate: SiO3 (285 nm) on highly doped Si (backgate)
Dielectric: SiOq

Graphene Properties:
e High mobility: pu ~ 10° cm?/Vs
e Ballistic transport regime possible

e Acts as a 2D Dirac fermion system

Gate Control:
Vg = controls charge carrier density

Density of States (DOS):

Linear in graphene: p(E) x |E]
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Chapter 4

Interacing electrons

Until now, we considered electrons as independent particles but they actually interact
strongly between them. Understanding those interactions will bring us towards under-
standing superconductivity and other phenomomena.

4.1 Hubbard model

4.1.1 Bosons and Fermions

First things first, let’s briefly recall some knowledges about operators and formalism.
Let’s consider this two particles wafunction :

W) = by ylp1z) X [P2y)

Where ”p;,” means particle 1 in state x.
The exchange operator is defined such that

P‘\I'> = by 2[p1y) X [P22) = £|¥)
And applying two times the operator : P(P(|®))) = |¥), meaning b2, = 1. Bosons are
defined for the ”+” case when Fermions are the ”-” case.

Consequence: A state can not be occupied with more than one fermion in
any basis.

4.1.2 Commutator

The anti-commutator of two operators is defined as:
{A,B} = AB+ BA

Now, consider the fermionic creation and annihilation operators, c| and c,.
They obey the following key algebraic relations:

e Nilpotency (no double occupancy on the same site):
clel |any state) = 0
= {cl,cl} =0
{¢z,cz} =0
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This means that applying the creation (or annihilation) operator twice on the
same site gives zero. You cannot create (or destroy) two identical fermions at
the same location. This is a direct algebraic consequence of the Pauli exclusion
principle, which states that no two fermions can occupy the same quantum state.

e Canonical anti-commutation relation:

{Cg;, CL} = 5%,2/

This reflects the orthonormality of single-particle states, assuming (z|y|z|y) = 4.y -
It ensures that creating a particle at site y and annihilating one at site x yields a
nonzero result only when z = y.

Conclusion: These algebraic rules encode the Pauli exclusion principle in operator
form. The occupation number per site is restricted to either 0 or 1, consistent with the
fermionic nature of particles like electrons.

Let’s write n, = cic, ((1|n,]1) = 1 and (0|n,|0) = 0).

4.1.3 Two sites and one electron with possible tunneling

We can consider this simple case with one only one electron | 1) which can tunnel
between two sites.
The Hamiltonian is :
H = —t(cley + chey)

The basis is :
{1 1,0):10,1)}
Computing the different component of the Hamiltonian like :

Hyy = (1,0|H| 1,0) = —t(0,0]e11(clea + cher)el]0,0) =0+ 0 =0

We finally get :
0 —t
i=1% ]
4.1.4 Several electrons and interactions

What interactions should we consider? To answer this question let’s remind that the
distribution of electrons is really localized on the site they're affected to. This means we
can start by taking into account the interactions between e~ on the same sites. Many
interactions can be added but let’s be simplistic for now.

The parameter U is defined such that :
Hy; = Unjyng = UCITcmchu

It is the resulting energy penalty due to double occupancy on a site. The total Hamil-
tonian result in:

Hror = Y (—tijelycio + hoc) + D ionio+ > Unipni,
<i,j>,U 0,0 %

The interesting case is the when we have two electrons and two sites. With such
interactions, if we choose both electrons having the same spins 1 for example, then we
obtain a trivial basis | 1,1) and E=0.
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We need to start from the case with one electron up and one electron down :

Basis = {| 1,1);1 1, 1);1D,0);10, D)}

D means double occupancy up and down.

Every of these eigenstates is obtained from |0,0) applying the wright operators :
cJ{TC§¢|O, 0) = | 1,4). Depending on the choice of the placement of the operators in the
Hamiltonian, there will be a minus sign for the | 1,]).

Computing the Hamiltonian of the system we do get:

0O 0 -t -—t

0 0 Ft =Ft
—t F U 0
—t F 0 U

H =

In the upper left square of this matrix there is no components meaning no flip-flop terms
which would correspond to direct magnetism. This magnetism is however still possible
through different transformations with this Hamiltonian.

The Energy of the eigenstate S is :

5 VIE T U2 U

o 2
The eigenstate S has a shape:
|5) oc (V1612 + U2 = U)(| 1,4) — [ 1, 1) + 4¢(1D,0) +0, D))

In the limit where U>>t : Ez = %tz. It is the Heisenberg limit which leads to

antiferromagnetic type of sites that are energetically more favorable. More generally, a
small value of U tends to favor double occupancy.

4.1.5 Hubbard Model Atomic Limit (¢/U — 0)
Key Characteristics:

e Localized Electrons: Kinetic energy (hopping ¢) is negligible compared to on-
site Coulomb repulsion (U). Electrons are strongly localized.

e No Band Formation: Energy levels are determined by local potential and U,
not electron delocalization.

e Atomic-like Energy Levels: Sites can be empty (0 ™), singly occupied (1 e7),
or doubly occupied (2 e~ with energy cost U).

e High Degeneracy: Multiple degenerate ground states possible for a given elec-
tron number and lattice size.

e Mott Insulator Behavior (Half-filling): A gap of ~ U opens between lower
and upper Hubbard bands, leading to insulating behavior.

Theoretical Significance:

e Starting Point for Strong Coupling Theories: Perturbation theory around
the U — oo limit.

e Understanding Local Correlations: Isolates the effects of on-site electron-
electron interactions.
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e Benchmarking for Numerical Methods: Exact solutions can be used to test
numerical approaches.

e Qualitative Insights: Provides basic understanding of Mott transitions and
strong correlation effects.

Applications and Extensions:

Understanding Mott insulators.

High-temperature limit in some cases.

Extension to more complex Hubbard models.

Foundation for Dynamical Mean-Field Theory (DMFT).

In Summary: The atomic limit is a crucial simplification of the Hubbard model
(t < U) that highlights the dominant role of local Coulomb interactions and provides
a foundation for understanding strongly correlated electron systems and the Mott insu-
lating state.

4.1.6 SU(2) Symmetry

To better understand the structure of spin states and their interactions in the Hubbard
model, it’s important to recognize the underlying SU(2) symmetry.

Definition: SU(2) is the group of unitary 2 x 2 matrices with determinant 1. It
governs spin rotations in quantum mechanics. In the context of the Hubbard model,
SU(2) symmetry reflects the invariance of the system under global spin rotations.

Spin Operators: Define the total spin operators as:
- 1 -
Si=3 Y cladapcis
a,B

where & = (0%, 0¥, 0%) are the Pauli matrices. These operators satisfy the standard spin
algebra:
[S¢, 83 = i6;;e*°S¢

Conservation Laws: The SU(2) symmetry implies that the total spin
5_:tot = Z gi
commutes with the Hubbard Hamiltonian:
[Ha gtot] = O

This means that the total spin and its projection SZ, are conserved quantities. As a

result, the eigenstates of the Hamiltonian can be classified by total spin S and magnetic
quantum number mg.

Singlet and Triplet Classification: SU(2) symmetry naturally leads to the clas-
sification of two-electron states into:
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e Singlet (S = 0): antisymmetric in spin, symmetric in space

1
|5) = \ﬁ(l nh =141
e Triplet (S = 1): symmetric in spin, antisymmetric in space
|t1> = | T7 T)
1
|t—1> = | \La \l/>

4.1.7 Singlet, triplet states and entanglement

Let’s look at the Energy plot over U normalizing by the tunneling:
Ground State Energy Eg/t vs. U/t

I I I I

ol e Lower i
0 momentum
— Upper
5 | |
g - |
0 0

5 |
—10 | |

| | | | | | | | | |

|
-12 -10 -8 -6 —4 -2 0 2 4 6 8 10 12
U/t

Few interesting things appear here, and let’s focus in the ¢ < U limit. First, let’s
try to understand the 0 momentum state (orange). We do have a triplet state with 0
energy as those three states are degenerate and sums up to 0 in the case of 2 electrons :

o ti =11
et 1 =15
® ly= ﬁﬂ N +1LD
It is equivalent to an overall spin number S=1 with three possible projections :
e t) =|S=1,mg=1)
et 1=|S=-1,mg=-1)

o to=|S=0mg=0)
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Applying a magnetic field would break symmetry and those projections would split in
energy. The SU(2) symmetry guarantees degeneracy of the triplet states in the absence
of a magnetic field but the singlet—triplet splitting observed in the energy spectrum is
purely due to interactions (like the Hubbard U and hopping t), not symmetry breaking.

The lower and upper curves correspond to an eigenstate :

1S) oc (| 1,4) — | 1, 1) + (ID,0) + [0, DY)

In the ground state case :

which does merge with the Heisenberg limit, and its energy is Fg = —%. This state
is a singlet state equivalent to |S = 0,mg = 0). In this simple basis, if you do measure
the first spin Up, you know that the spin on site 2 have to be Down. It is called a Bell
state and is referred as ”Entanglement”.

The upper band in this limit corresponds to the double occupancy term which is way
higher in energy.

Quick remark for triplet state in NV centers

As you may recall, NV centers have a triplet state with a zero field splitting of 2.87 GHz
between states [mg = £1) and |mg = 0). This splitting exists because there is a broken
symmetry here that Hubbard Hamiltonian did not break, which is the SU; symmetry.

4.1.8 Two unconnected pairs of sites

Let’s now consider a system of four sites consisting of two unconnected pairs. Let’s call
the pairs A and B. The constructed wavelength can be written :

|T) = AZAL[0) = AFAL[0)

with :
+ _ 4 + .+
A = CipCay — CopCy)
and same for B sites. It is symmetric under exchange of 2 singlets, which is equivalent
to say that a singlet looks like a Boson. Indeed, thise are called ”composite Bosons”,
and it means they can Bose-Enstein condensate evenif the underlying nature is fermions!

4.1.9 Valence bond solid

In the square lattice limit, we can get long range order, meaning that we know with a
high probability what spin states we have at any point if we do know the state on one
site: it is an antiferromagnet configuration. It is also reffered as spontaneous symmetry
breaking.

However, there are very different macroscopic ground states which are in theory
equivalent (a superposition), but in reality, an impurity somewhere or a residual mag-
netic field would result in an non trivial state because the system is so sensitive to
external interactions. It also happening when measuring in cold atoms system, it does
break this superposition state.

A transition between AFM and VSB phasis can be observed in materials like T1CuC'l3
by applying pressure. here is a schematic drawing about the phase diagram:
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Phase Diagram: Antiferromagnet vs. Valence Bond Solid

—— AFM order
—— VBS order

High

Low

Order parameter

0 Critical point 1
Tuning parameter (e.g. frustration, Jo/J;)
Frustration is a concept referring about the possible choice for organization of the
spins when you have some well defined symmetries like triangles. Let’s take the triangle

as an example of a system with SU(2) symmetry in which we can still choose the spin
distribution:

29 &
;?\

Frustrated triangle J, 1

Two possible choices can de made:
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By extending this to a lattice, the system have a ”little” frustration because it has
a bit of hard time ordering. In some more complicated geometries, it can result in an
important frustration like for example the crystal structure of herbertsmithite.
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4.2 Superconductivity Phenomenology

In 1911 happened the discovery of superconductors by Onnes, made possible after great
improvements on cryogenic liquids. Researchers wanted to answer the question :

How the resistivity of a material scale with temperature?

The first material successfully tested at low temperature thanks to liquid helium was
Mercury (Hg), because it was the most refinable metal at that time. Close to room tem-
perature, the current voltage formula is well known as Ohm’s low, but superconductors
show a breakdown of resistance at a given ”critical temperature” where R=0.

Ohm’s Law as we know it
U=RI
Also written :
J=0F
What does that mean? it means a force that’s proportionnal to a velocity, which
is not the classical scheme derivated from Newton’s equation. However, it has to be
understand as a friction, a resistance as we increase the current. Carriers move and reach

a steady-state with a scattering term that we can explain with a classical approach in the
Drude model becuase Ohm’s law does breakdown in some limits like at low temperature.

4.2.1 Drude Model (Classical Theory)
Electrons accelerate under the influence of an electric field, but experience scattering:

_

= D
—_—eFE-Z
dt ¢ T

Where 7 is the scattering time. charge density wise, it is also written :

dj ng® - j
dj _nd® 5 j
dt m T
Here, m is the effective mass of the moving charge and n is the charge density.
In the steady state :

7= ne’r =
m
We note :
ne’r
og =
m
and define the conductivity as :
j = Re{cE}

Limiting behavior: As T — 0, 7 — o0 = ¢ — oo Meaning that charges would
move without any scattering and :

dj ng® -

~_M g

dt m
If we have a AC electric field o< Egsin(wt):

j /E(t) x %cos(wt)
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This correspond to a 90° shifted current density with respect to the Electric field, and also
a time dependency. This phase shift is directly introduced by the resulting imaginary
conductivity og = ﬁi .

Let’s try to understand intuitively what’s happening with this simple model for a
superconductor.

General solution

The general solution of the conductivity is :

ng*t
g = —m-——----—-—-—
b m(1 — iwT)
In most metals 7 ~ 107'%s so a frequency close to 10 THz. Trying to do what is
called " THz spectroscopy” is a way to proceed conductivity measurement in materials
like superconductors.

a(w)/a0

1 1

0.5 |

: : : : w (u.a.)

0.2+

In the limit 7 — oo we do get a different behavior :
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o(w) (arb. units)

o) - - - Im[o(w)]
4t
30
2+
1’ \\\
# :"‘““"‘T““““"j"""""'@w

This last case correspond to a superconductor with a step of the real part of the
conductivity at w = 2A. This gap is called ”Optical gap”. We clearly see the imaginary
part diverging as % meaning SC conductance is infinite only at infinitely low frequencies.

Thinking in terms of equivalent electric scheme, we can model it like:

R(w) L(w)

L(w) is the kinetic inductance.

The conductivity in this case indeed scale as %, and that does correspond to the
following equation :

dj 2
4 _nse g
dt m
This equation is known as the 1st London equation. ng is referring to an ”empirical
density” that was not so clear for superconductors at first.

Then, we can summarize that superconductors are better conductors only in the DC
limit, because that won’t be true anymore if the frequency increases too much.

If we want to measure the V-I behavior of a superconductor, we can use a simple
voltage source and a resistor to flow a current. Meaning that it is the steady state of

the electronic circuit that imposes the current. Doing such an experiment reveals the
critical current value as shown on this curve:
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—— Superconductor

How to understand that we can have R = 0 but no infinite I then ?
Superconductors conductivity at finite temperature (meaning below T /2) can be
expressed as :

o=op(n,)+o(ns)

ng are the superconducting electrons and increasing too much the current will force
the normal electrons (n,) to move and we can get a bit of dissipation in this regime.

4.2.2 Properties of SC in a magnetic field

An unexpected consequence of superconductivity was also discovered: magnetic-field
permeability. That is to say, a superconductor is able to expel a magnetic field when
entering the SC state. Eddy currents were already known and expected at this time
because observed in copper for instance, but magnetic field permeability was not.

Let’s try to understand through the maths what would happened wit a magnetic
field.

Superconductor in a B field

let’s first think about a cylindrical SC with longitudinal B:
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- - o

~_
Cylinder
Faraday’s law of induction gives:
- 0B
VXE=——
. ot
Adding the 1st London equation we do get the following equation:
L8] m m aJ -
ot mnge? n562v x ot t

This equation represents the Eddy currents in a perfect conductor in response to an
applied magnetic field.
Let’s now add Ampere’s law to this:

Vxﬁz,uoféf:iVxé
Mo
From operators equivalence and Gauss’s law we do get that:
VXxVxB=V(V-B)-=V?B=-V?B since V-B=0
Now combining the previous results:

m

1 o=
0y(——V?B +

Ko nseQB) =0

The solutions of this equation are the possible fields in a perfect conductor. A typical

length parameter can be defined like:

m

Honse?

N o=

It is the **London penetration depth**, which meaning is how long a magnetic field

penetrates in a SC. More importantly, it scales with \/%, with electrons that are turning

due the external magnetic field that can expel a given amount of B.

One possible solution for this equation is a constant field over time.

In the 30°, Meissner observed an expulsion of magnetic field when crossing the SC
phase transition. The idea of the London brothers was to say that the all-part in
parentheses could be 0:
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I
-V?B+ 5B=0
A
L
This equation is easy to solve and called the 2nd London equation.

Restricting to a 1D problem :

Superconductor

B,(z) = Boe~*/*r

Az is typically small in cold superconductors : 10-100 nm. However, this value
can get very large. Measuring this length is a way to measure ng nowadays. You can
measure the magnetic field with films sensitive to polarization rotation of light.

This behavior is different from a perfect diamagnet because we would get :

By 1

- .
Vacuum Diamagnet

Field or zero field cooling

Let’s consider a superconductor and a perfect conductor. Two paths are possible to be
in a given state of temperature and external magnetic field. The first one consist in
cooling down the phase transition before applying a magnetic field, it is the zero field
cooling. The later is cooling down with the external field applied:

58



FC

Bex
0 gxt et
Field Cooling vs Zero Field Cooling

The perfect conductors and superconductors will behave the same in the Zero field
cooling, expelling any applied magnetic field. It means that the superconductor will
actively expel a magnetic field reorganizing its current to create a perfect diamagnet. It
is the classic Meissner effect.

The interesting case is the field cooling, in which, at first a magnetic field would
enter the superconductor :

External Magnetic Field Bext

Vacuum Vacuum
\ + \
[4 [4
\ \
[4 [4
\ \
[4 [4

Superconductor
\ \
[4 [4
\ \
[4 [4

Then, when reaching Tc, the superconductor would ideally exclude the field as it
becomes superconductive but in reality because of finite cooling rates, imperfections or
chosen geometry, magnetic flux can be trapped inside the material

Vacuum Vacuum

~

\
4

Superconductor

¥
~

This partial exclusion (or ”flux trapping”) can be used to study superconductors.
Let’s focus on a theoretical case of hole inside a disk to understand it. With a zero field
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cooling, the expected magnetic field insid

e the hole is zero independently how much

we increase the external magnetic field. However, with a Field cooling, some field goes
through the hole as it has a lower energy cost. Still, inside the SC you measure no

magnetic field...

Hole

SC

SC

Trapped Magnetic Flux & when Field cooling

Question : Is the 2nd London equation

indicating what could be the magnetic field

in the hole 7 Not at all. And then, what if change the magnetic field dynamically?
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0 Bext

Magnetic field brought to 0 after cooling

*
ext

In that configuration (black arrow), a perfect superconductor with no hole would
come back to its initial state. However, with a hole inside, it would keep a magnetic
field inside, or "trapped flux”, which could take whatever value of B.,; that was inserted.

At first, two groups reported expected integer values of the magnetic flux, however,
the expected ®y was % as the considered charges were elecrons. The quantization was
indeed observed but not at this expected values. Let’s try to get an insight about what

should be the magnetic flux ®.

Magnetic vector potential

In the context of a superconducting loop enclosing a magnetic flux ®, the magnetic
vector potential A plays a central role. It is defined as :

B=VxA
s_ 04
ot

This vector potantial is not unique and there is a gauge freedom of choice that gives
same electric and magnetic field distribution. According to Stokes’ Theorem:

éAwﬂz[LWUUMdSz[LBdSz@ (4.1)

This relation implies that even in regions where B = 0, the potential A may still be
non-zero and influence the quantum phase of charged particles.
In the Aharonov-Bohm effect, the phase enclosed on a loop is defined as :

4y 4
w:f©:7%Adl
Groop = =73 P

If we consider the phase of a wavefunction defining our superconducting charges, we
should get : ¢j00p = N27. For a simply connected loop inside the superconductor, the
only solution is ¢js0p = 0 everywhere and we have a well defined phase. Whenever the
loop is not simply connected, ¢io0p = £® = N27, meaning & = N %. This flux depends
only on fondamental parameters which helped to measure the ratio % more precisely.

Thus, the consequence is that we have indeed quantization but it depends on the
path taken and indicate that we have a state with well defined wavefunction.

The experimental value of q was determined to be ¢ = 2e. The charge carrier of
superconductors are not single electrons but pairs of electrons.
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Generalized momentum and current operator

We define the generalized momentum such as :

Po = mi+ q/_l'
It is the conserved parameter with respect to the translation symmetry, and also the
classical result, also noted :

% - (Pe — qA)?
=G T
2m
In quantum physics, we do write Pg as the operator iAV, so that the hamiltonian has
terms in 1AV — gA. Knowing this, we can get back to the current density expression.
Indeed, the classical approach has some limits so let’s describe the system in terms of
wavefunction :
U(z) = (2|¥) = /nge?®

We make the approximation that the density of charge is uniform in space. The current

operator is written as :
nsq T

=4 (19 (x) - g )

which is equivalent to the 2"¢ London equation.

j:

Critical parameters of superconductors

Electrons not scattering is not enough to describe SC, we have to consider a ”conden-
sation” happening. Then, how to understand the critical current ? what we can tell
for now is that a way to maximize the critical current is to optimize impurities and the
geometry of the material.

The critical current is not the only ”critical” parameter in superconductors. We
also refer to the critical frequency, known as superconductive gap or optical gap. There
is also a critical H field which depends strongly on the shape of the material. It is
enlightening the cost of field exclusion which is roughly Ig—:.

Vertical
" _—
" _—
" ] _—
Horizontal

The horizontal orientation costs less in energy in terms of field expulsion. The thermo-
dynamic critical field is defined as :

Hc2rit (T)

3 = fyv — fsc
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fn is the Helmoltz free energy density of the normal phase (non SC). It follows that
the critical field depends on temperature :

Hcrit(T) = Hcrit(l - (TE)Q)

C

Temperature Dependence of the Critical Magnetic Field

crit

T/TCO'G 0.8 1

0 0.2 0.4

4.2.3 SQUID and flux Qubit

We now have all the ingredients to understand how some of the most interesting appli-
cations of superconductivity such as SQUIDs work. In order to explain it, let’s look at
the build up of a phase in superconductors which are the origin of SC currents.
Let’s write the 1st London equation with the phase now:
09 e(x) 2V
o h h
The phase gradient corresponds to a current, a momentum.

If we consider two classical semiconductor domains close to each others with the
same charge density and let’s say separated by vacuum, we wouldn’t expect a current
flowing in between only bringing them close together. Now, considering that they have
two different but related phases, it shouldn’t change anything in this simple picture.
However, in a superconductor the energy would depend in the relative phase between
the two, so let’s try to come back to our previous two site and two level model to get a
feeling about this

Bloch sphere understanding

— to finish..

Josephson equation

From the above phase-time relation and the quantum tunneling of Cooper pairs between
two superconductors separated by a thin insulating barrier, we obtain the Josephson
relations, here we consider any AC field (periodic function):

€; = —egcos(Ag)
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then,
de; 2eV

7; = eosm(Agb)—h = IJV
where V is the imposed voltage. The derived josephson equation is :
I = I.sin(A¢)

Here, I, is the critical current, typically on the order of a few mA , depending on the
junction’s geometry and materials.

Current-phase relation plot:

1L I = I.sin(A¢)

Ag

SQUID: Superconducting Quantum Interference Device

A SQUID consists of two Josephson junctions arranged in a superconducting loop.
The current through the SQUID depends not only on the phase difference but also on
the magnetic flux ® threading the loop.

()
&)

B)
B

Current in a SQUID:
The total critical current of the SQUID depends on the external magnetic flux ®

and is given by:
P 1)
I =2I.cos (;0) sin (2>
h

where ®g = 5- is the flux quantum and ¢ is the total phase difference across the
junctions.
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Measurement of ¢q this way can be done with a precision of 1078 T that helps to
better define the physics constants.

4.2.4 Flux Qubit and Anharmonicity

Flux qubits are superconducting loops interrupted by Josephson junctions, typically
three, that allow for the creation of two persistent current states flowing in opposite
directions. These states can be used as the logical |0) and |1) of a qubit.

What makes flux qubits particularly interesting is the presence of strong anhar-
monicity in their energy spectrum. Unlike harmonic oscillators, which have equally
spaced energy levels, the flux qubit has a double-well potential whose minima corre-
spond to different current circulations. The energy levels in each well are not equally
spaced. This anharmonicity is crucial because it allows selective addressing of transitions
(e.g., |0) — |1)) while suppressing unwanted excitations.

Nonlinearity without dissipation:

This setup is particularly remarkable because it provides a highly nonlinear response
without dissipation — the Josephson effect allows currents to flow without resistance.
This is in stark contrast to traditional nonlinear elements such as diodes or transistors,
which are dissipative and introduce thermal noise.

This dissipation-free nonlinearity is at the heart of why superconducting circuits,
including flux qubits and Josephson parametric amplifiers, are so powerful for low-noise
applications such as quantum information processing and quantum-limited amplifica-
tion.

4.2.5 Flux Trapping in a Ring-Shaped Superconductor

Now, we consider a superconducting ring and examine what happens during cooling in
the presence of an external magnetic flux. It is well known that flux quantization can
occur — but how is this consistent with zero resistivity and no voltage?

Qualitative argument:

As the ring cools down below the critical temperature in the presence of a magnetic
field, it transitions into the superconducting state. Due to flux quantization, the total
magnetic flux inside the ring must equal an integer multiple of the flux quantum ®, =
h/2e. However, since superconductors tend to expel magnetic fields (Meissner effect), the
only way to preserve this quantization while canceling the external field is by inducing
a persistent current in the ring.
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But here’s the subtle point: even though there’s a current, it doesn’t necessarily flow
everywhere in the ring. There must be at least one path — a point or region — where
the current density is zero. Otherwise, we wouldn’t have a consistent solution for the
supercurrent around a closed loop with a quantized phase.

Quantum mechanical derivation:

Let’s formalize this using the Schrodinger equation. We consider a superconducting
ring and write the wavefunction of the superconducting condensate in the Coulomb
gauge, assuming no scalar potential V' = 0 and vector potential A # 0. The wavefunc-
tion can be decomposed in a Fourier series along the ring coordinate 6:

U(h) = Z cne™

In the Coulomb gauge, the minimal coupling Hamiltonian for a charged particle in
a vector potential is:

R 1 N2

= — (—mv - qA)

2m

On a ring of radius R, the kinetic energy becomes:

1 A 2
En = 5oge (n— a4eR)
The energy is minimized when the quantity inside the square is closest to zero. This
happens when:

~ qRAy
R

Since the phase ¢ must be single-valued around the ring (i.e., ¥(6+27) = ¥(0)), we
require n € Z, leading to the quantization of the total flux:

@:%E-df:nﬁ
q

For Cooper pairs with charge ¢ = 2e, this becomes:

hn—qAgR=0 = n

h
b = n<I>07 (I)O = —
2e

This confirms that flux quantization is a natural consequence of minimizing the
energy of a periodic superconducting wavefunction.

Zero current density path:

If you plot the supercurrent density j(6) o< [¥(0)]?V ¢, and the total current satisfies
the quantization condition, then at least one point along the ring must satisfy j(6) =0
— to accommodate the flux quantization without violating continuity or introducing
discontinuity in the phase.

4.2.6 Vortices and Ginzburg-Landau Theory

To describe superconductors on a macroscopic scale — including the formation of vor-
tices — we now introduce the Ginzburg-Landau (GL) theory. The GL free energy
functional involves a complex order parameter 1 (), which represents the local density
of Cooper pairs.

The GL equations are derived by minimizing the free energy:
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(—mv - q/T) wf +

2m*
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Minimizing this functional yields the Ginzburg-Landau equation:

ﬁ (=19 ~44) w\z + ot + BlY* =0

From this equation, two important physical length scales can be defined:
- The coherence length:

hQ

2m* o

&=

- The London penetration depth (reintroduced when A #0):

m* . «Q
Sl e e R L B

The Ginzburg-Landau parameter:

™

o A
£
This dimensionless number determines the type of superconductor:
-k < %: Type I superconductor, exhibits complete Meissner effect and sharp
transition into the normal state.
- K > %: Type II superconductor, allows partial magnetic penetration via

quantized vortices above a lower critical field H.; and below an upper critical field
Hes.

Sketch of the vortex:
The vortex solution appears when the phase of the order parameter winds by 27
around a point, and the modulus |¢| vanishes at the center.

[ (r)?

Vortex profile

‘woo|2 T

At the core r = 0, the order parameter vanishes: |(0)| = 0. It recovers to its bulk
value |1 |2 = —a/B over a length scale £. Circulating supercurrents (not shown here)
would appear if a vector potential A were included.

These vortices can form a lattice and play a crucial role in the mixed state of type
IT superconductors.
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4.2.7 A little bit about Condensation and Pairing in Supercon-
ductors

Before going further into vortex dynamics and topological effects, let’s step back and
ask: What actually condenses in a superconductor?

In most conventional superconductors, the condensation temperature — the tem-
perature below which a macroscopic quantum state forms — is **much higher** than
the temperature at which electron pairs (Cooper pairs) actually form. This indicates
that pairing happens first, and condensation occurs when these pairs begin to behave
collectively in a coherent quantum state.

Why do electrons pair at all?

Electrons repel each other via Coulomb interaction, so naively, pairing seems unlikely.
However, in the solid-state environment, this repulsion is effectively reduced due to
interactions with the positively charged ion lattice.

In a simplified picture, when an electron moves through the lattice, it slightly dis-
torts the ion positions — attracting them and creating a local positive region. A sec-
ond electron can then be attracted to this distortion. This mechanism, mediated by
**phonons**, leads to an effective attraction between electrons at low energies and long
distances.

Standing wave and energy lowering — BCS perspective:

When we consider the quantum wavefunctions of electrons near the Fermi surface,
the formation of standing wave-like superpositions of momenta (Ig and —];) becomes
energetically favorable. In the BCS theory, this superposition leads to a collective
potential well, which lowers the total energy of the system compared to the normal
state.

The condensation of these pairs into a macroscopic quantum state — with a single
phase and a well-defined gap — is what defines the superconducting phase.

This opens the door to today’s research directions:

- What are the limits of phonon-mediated pairing? - Can other mechanisms (spin
fluctuations, topological effects, moiré structures) give rise to high-T, or unconventional
superconductivity? - How do we model and control the collective condensate for quan-
tum technologies?

These questions drive much of the ongoing research in condensed matter and quan-
tum materials today.
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